
A Dummy’s Guide

Hacking WordPress Plugins

Plugins?

Sources: https://w3techs.com/technologies/details/cm-wordpress, https://www.netcraft.com/blog/september-2024-web-server-survey/

“The Common Vulnerabilities and Exposures (CVE) Program’s primary

purpose is to uniquely identify vulnerabilities and to associate specific
versions of code bases (e.g., software and shared libraries) to those

vulnerabilities. “

Sources: https://nvd.nist.gov/vuln, https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=wordpress+plugin

Why?

Why Security Research?

- CVEs make great CV padding
- It’s interesting
- Monetary reward (sometimes)
- Get vulnerabilities in real software fixed

Why WordPress Plugins?

- They’re written in PHP

- They’re written in PHP

- Super easy to install (relatively)

- Written by the community

- Easy disclosure process

- Well-trodden ground

How?

WordPress Specific

- WordPress Functions

- AJAX Actions

- REST API

- Code Search

WordPress Functions

esc_sql(), sanitize_text_field()

$wpdb->query('SELECT field FROM table ORDER

BY $order_by_var;')

$wpdb->prepare()

$wp_verify_nonce()

Public Endpoints

Public Endpoints

Public Endpoints - POC or GTFO

Public Endpoints - POC or GTFO

Public Endpoints - POC or GTFO

Public Endpoints - POC or GTFO

Public Endpoints - POC or GTFO

Code Search

Now What?

CVE Reversing

CVE Reversing

Steps

1. Code Comparison: Look at what changed between the two versions.

2. Spot the Vulnerability: Identify where the patch fixed the problem.

3. Build PoC: Use this info to create a basic exploit as a proof of concept.

Purpose

● Find the vulnerability by comparing the old (vulnerable) and new (patched) code

versions.

Why reverse engineer patches?

1. Practical experience

2. Deeper vulnerability understanding

3. Not exclusive to WordPress

Choosing a vulnerable plugin

Choosing a vulnerable plugin

CVE-2024-5450

https://www.cve.org/CVERecord?id=CVE-2024-5450

Bug Library Plugin

“This plugin provides an easy way to

incorporate a bug/enhancement tracking

system to a WordPress site. By adding a

shortcode to a page, users will be able to

display a bug list and allow visitors to

submit new bugs / enhancements. The

plugin will also provide search and

sorting capabilities. A captcha and

approval mechanism will allow the site

admin to avoid spam.”

https://wordpress.org/plugins/bug-library/

https://wordpress.org/plugins/bug-library/

Issue Description

The Bug Library plugin for WordPress is vulnerable to arbitrary file uploads due to

missing file type validation in the add_bug_field function in all versions up to, and

including, 2.1. This makes it possible for unauthenticated attackers to upload arbitrary

files on the affected site's server which may make remote code execution possible.

Finding the diff

From the CVE entry, the vulnerable

version is < 2.1.1 and it was patched in

version 2.1.1.

We go to the Trac:

https://plugins.trac.wordpress.org/log/b

ug-library/trunk and select the changes

in 2.1 and 2.1.1.

https://plugins.trac.wordpress.org/log/bug-library/trunk
https://plugins.trac.wordpress.org/log/bug-library/trunk

The Patch

Demo

Further impact

- Access sensitive files like wp-config.php

- Dump database information; usernames, hashed passwords, email addresses,

etc.

- Modify files on the server

- Escalate privileges by inserting an admin user in the database.

- And more!

Takeaways

● Developers write a lot of bad insecure code

● Patching is sometimes ineffective

● …

Resources

● Wordfence
○ https://www.wordfence.com/wp-

content/uploads/2021/07/Common-WordPress-

Vulnerabilities-and-Prevention-Through-Secure-

Coding-Best-Practices.pdf

● Patchstack
○ https://patchstack.com/articles/common-plugin-

vulnerabilities-how-to-fix-them/

○ https://patchstack.com/academy

● Do your own research!

https://www.wordfence.com/wp-content/uploads/2021/07/Common-WordPress-Vulnerabilities-and-Prevention-Through-Secure-Coding-Best-Practices.pdf
https://www.wordfence.com/wp-content/uploads/2021/07/Common-WordPress-Vulnerabilities-and-Prevention-Through-Secure-Coding-Best-Practices.pdf
https://www.wordfence.com/wp-content/uploads/2021/07/Common-WordPress-Vulnerabilities-and-Prevention-Through-Secure-Coding-Best-Practices.pdf
https://www.wordfence.com/wp-content/uploads/2021/07/Common-WordPress-Vulnerabilities-and-Prevention-Through-Secure-Coding-Best-Practices.pdf
https://patchstack.com/articles/common-plugin-vulnerabilities-how-to-fix-them/
https://patchstack.com/articles/common-plugin-vulnerabilities-how-to-fix-them/
https://patchstack.com/academy

Q&A

THANK YOU

	Slide 1: A Dummy’s Guide
	Slide 2
	Slide 3
	Slide 4: Plugins?
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Why?
	Slide 9: Why Security Research?
	Slide 10: Why WordPress Plugins?
	Slide 11: How?
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: WordPress Specific
	Slide 22: WordPress Functions
	Slide 23: Public Endpoints
	Slide 24: Public Endpoints
	Slide 25: Public Endpoints - POC or GTFO
	Slide 26: Public Endpoints - POC or GTFO
	Slide 27: Public Endpoints - POC or GTFO
	Slide 28: Public Endpoints - POC or GTFO
	Slide 29: Public Endpoints - POC or GTFO
	Slide 30: Code Search
	Slide 31: Now What?
	Slide 32
	Slide 33: CVE Reversing
	Slide 34: CVE Reversing
	Slide 35: Why reverse engineer patches?
	Slide 36
	Slide 37: Choosing a vulnerable plugin
	Slide 38: Choosing a vulnerable plugin
	Slide 39: CVE-2024-5450
	Slide 40: Bug Library Plugin
	Slide 41: Issue Description
	Slide 42: Finding the diff
	Slide 43: The Patch
	Slide 44: Demo
	Slide 45: Further impact
	Slide 46: Takeaways
	Slide 47: Resources
	Slide 48: Q&A
	Slide 49

